A nonsense mutation in the carboxyl-terminal domain of type X collagen causes haploinsufficiency in schmid metaphyseal chondrodysplasia.

نویسندگان

  • D Chan
  • Y M Weng
  • H K Graham
  • D O Sillence
  • J F Bateman
چکیده

Type X collagen is a short-chain homotrimeric collagen expressed in the hypertrophic zone of calcifying cartilage. The clustering of mutations in the carboxyl-terminal NC1 domain in Schmid metaphyseal chondrodysplasia (SMCD) suggested a critical role for this type X collagen domain, but since no direct analysis of cartilage has been conducted in SMCD patients, the mechanisms of type X collagen dysfunction remain controversial. To resolve this problem, we obtained SMCD growth plate cartilage, determined the type X collagen mutation, and analyzed the expression of mutant and normal type X collagen mRNA and protein. The mutation was a single nucleotide substitution that changed the Tyr632 codon (TAC) to a stop codon (TAA). However, analysis of the expression of the normal and mutant allele transcripts in growth plate cartilage by reverse transcription PCR, restriction enzyme mapping, and a single nucleotide primer extension assay, demonstrated that only normal mRNA was present. The lack of mutant mRNA is most likely the result of nonsense-mediated mRNA decay, a common fate for transcripts carrying premature termination mutations. Furthermore, no mutant protein was detected by immunoblotting cartilage extracts. Our data indicates that a functionally null allele leading to type X collagen haploinsufficiency is the molecular basis of SMCD in this patient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations within the gene encoding the alpha 1 (X) chain of type X collagen (COL10A1) cause metaphyseal chondrodysplasia type Schmid but not several other forms of metaphyseal chondrodysplasia.

Type X collagen is a homotrimer of alpha 1 (X) chains encoded by the COL10A1 gene. It is synthesised specifically and transiently by hypertrophic chondrocytes at sites of endochondral ossification. Point mutations and deletions in the region of the COL10A1 gene encoding the alpha 1 (X) carboxyl-terminal (NC1) domain have previously been identified in subjects with metaphyseal chondrodysplasia t...

متن کامل

Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage.

Mutations resulting in a premature termination codon (PTC) are a major cause of inherited disorders, and the majority of these mutant RNA transcripts are subjected to nonsense-mediated mRNA decay (NMD). This RNA surveillance results in reduced mutant allele expression, the extent of which can impact on the clinical severity. The molecular mechanisms of NMD in mammalian cells, its relationship t...

متن کامل

COL10A1 nonsense and frame-shift mutations have a gain-of-function effect on the growth plate in human and mouse metaphyseal chondrodysplasia type Schmid.

Missense, nonsense and frame-shift mutations in the collagen X gene (COL10A1) result in metaphyseal chondrodysplasia type Schmid (MCDS). Complete degradation of mutant COL10A1 mRNA by nonsense-mediated decay in human MCDS cartilage implicates haploinsufficiency in the pathogenesis for nonsense mutations in vivo. However, the mechanism is unclear in situations where the mutant mRNA persist. We s...

متن کامل

Folding and assembly of type X collagen mutants that cause metaphyseal chondrodysplasia-type schmid. Evidence for co-assembly of the mutant and wild-type chains and binding to molecular chaperones.

Schmid metaphyseal chondrodysplasia results from mutations within the COOH-terminal globular domain (NC1) of type X collagen, a short chain collagen expressed in the hypertrophic region of the growth plate cartilage. Previous in vitro studies have proposed that mutations prevent the association of the NC1 domain of constituent chains of the trimer based upon a lack of formation of a trimeric st...

متن کامل

گزارش یک مورد کندرودیسپلازی متافیزیال تیپ اشمیت

Mataphyseal chondrodysplasia is a term for group of dysplasias, characterized by radiographic changes in metaphyse tubular bones with normal epiphysis. Ït has various types with the name of Schmid type Janson and Mckusis. Schmid type metaphyseal chondrodysplasia is more common in infants, characterized by slight to moderate hieght, bending of limbs and waddling gate. This disease is caused by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 101 7  شماره 

صفحات  -

تاریخ انتشار 1998